
Refactoring to a  
System of Systems

!/" olivergierkeOliver Gierke # ogierke@pivotal.io

Of monoliths, microservices and everything in between…

$

2

3

Monolith
(aka. Big Ball of Mud)

Microlith
(the Careless Microservice)

Modulith
System 

of 
Systems

1 2

3

4

Messaging

REST

6

5

What are typical
Bounded Context
interactions in a
monolithic application?

“
4

What happens if these
patterns are translated 
1:1 into a distributed
system?

“
5

Can we build a  
better monolith 
in the first place?

“
6

How to translate that
new approach into a
distributed system?

“
7

The Domain

8

9

Orders Catalog

Inventory

Products
Product details
Prices

Order 
Line items

Stock
Inventory items

When a product is added
to the catalog, the
inventory needs to
initialize its stock.

“
10

When an order is
completed, inventory
shall update its stock 
for all line items.

“
11

What do we want to focus on?
• What are commonly chosen design patterns and strategies?

• How do Bounded Contexts interact with each other?

• What types of consistency do we deal with?

• How do the systems behave in erroneous situations?

• How do the different architectures support independent evolvability?

12

" Sample code
https://github.com/olivergierke/sos

13

https://github.com/olivergierke/sos

A couple of warnings…
The sample code is not a cookie cutter recipe of how to build things
The sample code is supposed to focus on showing the interaction model between Bounded Contexts,
how to model aggregates and strive for immutability as much as possible. However, to not complicate
the matter, certain aspects have been kept intentionally simple to avoid further complexity to blur the
focus of the samples:
• Not all domain primitives are fully modeled
• Monetary amounts are not modeled as such, but definitely should in real world projects.
• Quantities are modeled as plain long but also should get their own value types.

• Most projects use JPA for persistence. This requires us to have default constructors and some
degrees of mutability in domain types.
• Remote interaction is not fully implemented (not guarded against systems being unavailable etc.)

14

% The Monolith

15

16

Orders Catalog

Inventory

&

' 
Product

( 
Order

Line 
Items

)  
Inventory 

Item

Active invocation

Bounded Context
Legend

Aggregate

The Monolith – Design Decisions
+ Bounded Contexts reflect into packages
A (hopefully not very) typical Spring Boot based Java web application. We have packages for individual
Bounded Contexts which allows us to easily monitor the dependencies to not introduce cycles.

+ / − Domain classes reference each other even across Bounded Contexts
JPA creates incentives to use references to other domain types. This makes the code working with
these types very simple at a quick glance: just call an accessor to refer to a related entity. However, this
also has significant downsides:
• The „domain model“ is a giant sea of entities – this usually causes problems with the persistence layer

with transitive related entities as it’s easy to accidentally load huge parts of the database into memory.
The code is completely missing the notion of an aggregate that defines consistency boundaries.
• The scope of a transaction grows over time – Transactions can easily be defined using Spring’s
@Transactional on a service. It’s also very convenient add more and more calls — and ultimately
changes to entities — which blur the focus of the business transaction and making more likely to fail
for unrelated reasons.

17

The Monolith – Design Decisions
+ & Inter-context interaction is process local
As the system is running as a single process, the interaction between Bounded Contexts is performant
and very simple. We don’t need any kind of object serialization and each call either succeeds or results
in an exception. APIs can be refactored easily as IDEs can tweak calling and called code at the same
time.

− Very procedural implementation in order management
The design of OrderManager.addToOrder(…) treats domain types as pure data containers. It accesses
internals of Order, applies some logic to LineItems and manipulates the Order state externally. However,
we can find first attempts of more domain driven methods in LineItem.increaseQuantityBy(…).

18

The Monolith – Design Decisions
− Order management actively invokes code in inventory context
With the current design, services from different Bounded Contexts usually invoke each other directly.
This often stems from the fact that it’s just terribly convenient to add a reference to a different
managed bean via Dependency Injection and call that bean’s methods. This easily creates cyclic
dependencies as the invoking code needs to know about the invoked code which in turn usually will
receive types owned by the caller. E.g. OrderManagement knows about the Inventory and the Inventory
accepts an Order.
A side-effect of this is that the scope of the transaction all of a sudden starts to spread multiple
aggregates, even across contexts. This might sound convenient in the first place but with the application
growing this might cause problems as supporting functionality might start interfering with the core
business logic, causing transaction rollbacks etc.

19

The Monolith – Consequences
− Service components become centers of gravity
Components of the system that are hotspots in business relevance („order completed“) usually become
centers of dependencies and dissolve into god classes that refer to a lot of components of other
Bounded Contexts. The OrderManagement’s completeOrder(…) method is a good example for that as will
have to be touched to invoke other code for every feature that’s tied to that business action.

− Adding a new feature requires different parts of the system to be touched
A very typical smell in that kind of design is that new features will require existing code to be touched
that should not be needed. Imagine we’re supposed to introduce a rewards program that calculates
bonus points for completed orders. Even if a dedicated team implements that feature in a completely
separate package, the OrderManagement will eventually have to be touched to invoke the new
functionality.

20

The Monolith – Consequences
+ Easy to refactor
The direct type dependencies allows the IDE to simplify refactorings. We just have to execute them and
calling and called code gets updated. We cannot accidentally break involved third parties as there are
none. Especially in scenarios where there’s little knowledge about the domain, this can be very
advantageous. The interesting fact to notice here is that we have strong coupling but still can refactor
and evolve relatively rapidly. This is driven by the locality of the changes.

+ / − Strong consistency
JPA creates incentives to use references to other domain types. This usually leads to code that
attempts to change the state of a lot of different entities. In conjunction with @Transactional it’s very
easy to create huge chunks of changes that spread a lot of entities, which seems simple and easy in the
first place. The lack of focus on aggregates leads to a lack of structure that significantly serves the
erosion of architecture.

21

The Monolith – Consequences
− Order management becomes central hub for new features
The lack of structure and demarcation of different parts usually manifests itself in code that
implements key business cases to get bloated over time as a lot of auxiliary functionality being attached
to it. In most cases it doesn’t take more than an additional dependency to be declared for injection and
the container will hand it into the component. That makes up a convenient development experience but
also bears the risk of overloading individual components with too many responsibilities.

22

The Microlith

23

%
%
%

24

Orders Catalog

Inventory
,  

HTTP 
POST

,  
HTTP 
POST

Update 
inventory Initialize 

stock

Active invocation
System

Legend

The Microlith – Problems
+ / − Simple, local transactional consistency is gone
The business transaction that previously could use strong consistency is now spread across multiple
systems which means we have two options:
• Stick to strong consistency and use XA transactions and 2PC
• „Starbucks doesn't use two-phase commit“ – Gregor Hohpe, 2004

• Switch to embracing eventual consistency and idempotent, compensating actions

− Interaction patterns of the Monolith translated into a distributed system
What had been a local method invocation now involves network communication, serialization etc.
usually backed by very RPC-ish HTTP interaction. The newly introduced problems usually solved by
adding more technology to the picture to implement well-known patterns of remote systems
interaction, like bulkheads, retries, fallbacks etc. Typically found technology is Netflix Hystrix,
Resilience4j, Spring Cloud modules etc.

25

http://www.enterpriseintegrationpatterns.com/ramblings/18_starbucks.html

The Microlith – Problems
− Remote calls executed while serving user request
As this interaction pattern usually accumulates a lot of latency (especially if the called system calls other
systems again) the execution module needs to switch to asynchronous executions and reactive
programming, further complicating the picture.

− Individual systems need to know the systems they want to invoke
While the location of the system to be called can be abstracted using DNS and service discovery,
systems following that architectural style tend to ignore hypermedia and hard-code resource locations
to interact with into client implementations. This creates a rather strong coupling as it limits the servers
ability to change it’s APIs.

− Running the system requires upstream systems to be available or mocked
As the invocation of other systems is a fundamental part of the execution of main business logic, these
upstream systems need to be available when a system is run. This complicates testing as these systems
usually need to be stubbed or mocked.

26

The Microlith – Problems
− Strong focus on API contracts
As the interaction pattern between the systems is a 1:1 copy of the one practiced in the monolith,
usually the same API definition techniques and practices are used. This usually oversees that this creates
the same strong coupling between the communicating parties and evolvability severely suffering as the
communicating parties are located at much greater distance than in the monolith.
For reference, see Jim Weirich’s talk on Connascence:

„As the distance between software elements increases, use weaker forms of connascence.“
Ignoring that rule produces tightly coupled distributed systems preventing independent evolution of
the individual systems, a core goal of a microservice architecture in the first place.

27

- The Modulith

28

29

Orders Catalog

Inventory

Order 
completed

. 
Event Product 

added

Out of 
stock

. 
Event

. 
EventEvents published to

Bounded Context
Legend

The Modulith – Fundamental differences
+ Focus of domain logic implementation has moved to the aggregate
The aggregates become the focus point of domain logic. Key state transitions are implemented as
methods on the aggregate. Some of them register even dedicated events.

+ Integration of Bounded Contexts is implemented using events
The events produced by an aggregate are automatically published on repository interaction via Spring’s
application event mechanism. This allows to define event listeners in other interested Bounded
Contexts.

+ Invert invocation dependencies between Bounded Contexts
Previously code within a Bounded Context actively reached out to other contexts and invoked
operations that change state within that context. These state transitions can now be triggered by
consuming events published by other Bounded Contexts.

30

/ Detour:
Events and Consistency

31

32

@EventListener

@EventListener

…

@TransactionalEventListener

@TransactionalEventListener

…

@Transactional
. 

Event

. 
Event

Commit

1
2

3

4

5

6

7

8

Consistency boundary
Spring bean

Legend

Application events in a Spring application
1. We enter a transactional method
Business code is executed and might trigger state changes on aggregates.

2. That transactional method produces application events
In case the business code produces application events, standard events are published directly. For each
transactional event listener registered a transaction synchronization is registered, so that the event will
eventually be published on transaction completion (by default on transaction commit).

3. Event listeners are triggered
By default, event listeners are synchronously invoked, which means they participate in the currently
running transactions. This allows listeners to abort the overall transaction and ensure strong
consistency. Alternatively, listeners can be executed asynchronously using @Async. They then have to
take care of their transactional semantics themselves and errors will not break the original transaction.

33

Application events in a Spring application
4. Service execution proceeds once event delivery is completed
Once all standard event listeners have been invoked, the business logic is executed further. More events
can be published, further state changes can be created.

5. The transaction finishes
Once the transactional method is done, the transaction is completed. Usually all pending changes
(created by the main business code or the synchronous event listeners) are written to the database. In
case inconsistencies or connection problems, the transaction rolls back.

6. Transactional event listeners are triggered
Listeners annotated with @TransactionalEventListener are triggered when the transaction commits,
which means they can rely on the business operation the event has been triggered from having
succeeded. This allows the listeners to read committed data. Listeners can be invoked asynchronously
using @Async in case the functionality to be invoked might be long-running (e.g. sending an email).

34

/ Detour:
Application Events 
with Spring (Data)

35

Application events with Spring (Data)
• Powerful mechanism to publish events in Spring applications
• Application event – either a general object or extending ApplicationEvent
• ApplicationEventPublisher – injectable to manually invoke event publication

• Spring Data event support
• Spring Data’s focus: aggregates and repositories
• Domain-Driven Design aggregates produce application events
• AbstractAggregateRoot<T> – base class to easily capture events and get them published on
CrudRepository.save(…) invocations.

• No dependency to infrastructure APIs

• Integration with messaging technology via event listeners

36

37

// Super class contains methods with
// @DomainEvents und @AfterDomainEventPublication
class Order extends AbstractAggregateRoot<Order> {

Order complete() {

registerEvent(OrderCompletedEvent.of(this));
return this;

}
}

38

@Component
class OrderManagement {

private final OrderRepository orders;

@Transactional
void completeOrder(Order order) {
orders.save(order.complete());

}
}

Application events – Error Scenarios
A synchronous event listener fails
In case a normal event listener fails the entire transaction will roll back. This enables strong consistency
between the event producer and the listeners registered but also bears the risk of supporting
functionality interfering with the primary one, causing the latter to fail for less important reasons. The
tradeoff here could be to move to a transactional event listener and embrace eventual consistency.

An asynchronous event listener fails
The event is lost but the primary functionality can still succeed as the event is handled in a separate
thread. Retry mechanisms can (should?) be deployed in case some form of recovery is needed.

39

Application events – Error Scenarios
The transactional service execution fails
Assuming the event listeners also execute transactional logic, the local transaction is rolled back and the
system is still in a strongly consistent state. Transactional event listeners are not invoked in the first
place.

A transactional event listener fails
In case a transactional event lister fails or the application crashes while transactional event listeners are
executed, the event is lost and functionality might not have been invoked.

40

/ Detour:
Event Publication Registry

41

42

@TransactionalEventListener

@TransactionalEventListener

…

. 
Event

)

)

@TransactionalEventListener

…

@TransactionalEventListener

…
)

)

Transaction Commit

42

@TransactionalEventListener

@TransactionalEventListener

…

. 
Event

)

0

1

@TransactionalEventListener

…

@TransactionalEventListener

…
) 1

0

Transaction Commit

Event Publication Registry
1. Write application event publication log for transactional listeners
On application event publication a log entry is written for every event and transactional event listener
interested in it. That way, the transaction remembers which events have to be properly handled and in
case listener invocations fail or the application crashes events can be re-published.

2. Transaction listeners are decorated to register successful completion
Transactional event listeners are decorated with an interceptor that marks the log entry for the listener
invocation on successful listener completion. When all listeners were handled, the log only contains
publication logs for the ones that failed.

3. Incomplete publications can be retried
Either periodically or during application restarts.

43

" Sample code
https://github.com/olivergierke/spring-domain-events

44

https://github.com/olivergierke/spring-domain-events

Summary
Events for Bounded Context interaction
Spring’s application events are a very light-weight way to implement those domain events. Spring Data
helps to easily expose them from aggregate roots. The overall pattern allows loosely coupled
interaction between Bounded Contexts so that the system can be extended and evolved easily.

Externalize events if needed
Depending on the integration mechanism that’s been selected we can now write separate components
to translate those JVM internal events into the technology of choice (JMS, AMQP, Kafka) to notify third-
party systems.

45

The System of Systems

46

%%%

Integration options
47

Messaging REST

What is needed for a
single system to run?

“
48

What happens if a
system goes down?

“
49

What happens if a  
failed system comes 
up again?

“
50

What happens if a new
system enters the scene?

“
51

The System of Systems

52

%%%

2 Messaging

53

Orders Catalog

Inventory

. 
Order 

completed

Kafka

. 
Product 
added

. 
Out of 
stock

2 Order completed
2 Product added

2 Product added

Demo
• Start broker

• Start individual services
• Show HAL browser, APIs

• Show systems interaction
• Add Product -> show InventoryItem and ProductInfo being created
• Trigger shipment -> show amount in InventoryItem increasing
• Trigger order creation -> show amount in InventoryItem decreasing
• Trigger further order creations -> show Inventory publishing OutOfStock event

54

Key characteristics
Integration via a central broker
• Shared infrastructure
• Some business decisions (TTL of events) in shared component
• Broker knows about all messages of all systems (potentially forever)
• Technology built for scale

Events published as messages

55

Key characteristics
3 Different broker technologies have different replay characteristics
• JMS — durable subscription (requires initial registration with the broker)
• AMQP — fanout exchanges (requires initial registration with the broker)
• Kafka — topics / partitions, log compaction

3 Coupling via message serialization format

56

Key characteristics
3 Different broker technologies have different replay characteristics
• JMS — durable subscription (requires initial registration with the broker)
• AMQP — fanout exchanges (requires initial registration with the broker)
• Kafka — topics / partitions, log compaction

3 Coupling via message serialization format

3 Transactional semantics
• 2PC or compensating messages

56

The System of Systems

57

%%%

4 REST

58

Orders Catalog

Inventory

. 
Order 

completed

4  
API

. 
Product 
added

. 
Out of 
stock

4  
API

4  
API

5
5

 Event publication via HTTP resources
HTTP resources for events
Events are considered application state and expose HTTP resources for client consumption

Typical design aspects
• Collection resource filterable by:
• Event type — as a replacement for topics
• Publication date after — to see event

• Pagination — to allow clients to define the pace at which they want to see events
• Caching & conditional requests — to avoid load on the application

Typical media types used
• Atom feeds (XML)
• HAL
• Collection/JSON

59

4

 Event consumption via polling5

Clients regularly poll event resources
Clients interested in events of other systems discover producing system and events resource

Client under control of the consistency gap
• Trade polling frequency over

Typical design aspects
• Low coupling through service- and resource discovery
• Focus on link relations and URI templates, http://…/events{?since,type}

• Polling frequency as key actuator for integration
• Back-off strategies if the remote system is unavailable
• Purposely bigger consistency window in case of heavy load

60

Key characteristics
+ No (additional) centralized infrastructure component needed
We don’t need to connect to a central, shared resource to run the system. This is eases testing. Also,
HTTP interaction is usually well understood and already used in the system anyway. A lot of HTTP based
technology available to help constructing the overall system (caches, proxies etc.)

+ Event publication is part of a local transaction
Event publication does not involve interaction with an additional resource. It’s basically an additional
row in the database table.

+ Publishing systems controls event lifecycle / security
The publishing system completely controls the lifecycle of the events published. Changes in e.g. the TTL
do not involve reconfiguration of infrastructure. Security implications (who is allowed to see which
events?) are handled on the API level.

61

Key characteristics
+ Events stay with the publishing system
As events are application state, there’s no single component in the overall system that can get flooded
by one system potentially flooding the overall system with events.

− Bigger consistency gap because of polling
The pull-model of course creates a bigger consistency gap than message listener invocation. As systems
have to cope with eventual consistency anyway, this might not be a big problem.

− Doesn’t scale too well for high-volume event publications
In case of a lot of events per single aggregate, the aforementioned consistency gap might be
unacceptable.

62

The System of Systems

63

%%%

Summary

Key aspects
• Limited remote interaction
• „I like monoliths so much that I’d like to build many of them.“ — Stefan Tilkov

• Separation of user requests and state synchronization
• Data duplication to avoid the need to synchronously reach out to 3rd-party systems
• Implicit anti-corruption layer to map models

64

Resources

65

Resources
Self-Contained Systems
• https://scs-architecture.org

Connascence
• https://en.wikipedia.org/wiki/Connascence_(computer_programming)

The Grand Unified Theory – Jim Weirich, 2009
• https://www.youtube.com/watch?v=NLT7Qcn_PmI

Software Architecture for Developers – Simon Brown
• https://leanpub.com/b/software-architecture

Starbucks doesn’t use two-phase commit – Gregor Hohpe, 2004
• http://www.enterpriseintegrationpatterns.com/ramblings/18_starbucks.html

66

https://scs-architecture.org
https://en.wikipedia.org/wiki/Connascence_(computer_programming)
https://www.youtube.com/watch?v=NLT7Qcn_PmI
https://leanpub.com/b/software-architecture
http://www.enterpriseintegrationpatterns.com/ramblings/18_starbucks.html

Resources – Domain-Driven Design
Domain-Driven Design – Eric Evans, 2003
• https://www.amazon.com/Domain-Driven-Design-Tackling-Complexity-Software/dp/0321125215

Implementing Domain-Driven Design – Vaughn Vernon, 2013
• https://www.amazon.com/Implementing-Domain-Driven-Design-Vaughn-Vernon/dp/0321834577/

Domain-Driven Design Distilled – Vaughn Vernon, 2016
• https://www.amazon.com/Domain-Driven-Design-Distilled-Vaughn-Vernon/dp/0134434420
• https://www.amazon.de/Domain-Driven-Design-kompakt-Vaughn-Vernon/dp/3864904390

67

https://www.amazon.com/Domain-Driven-Design-Tackling-Complexity-Software/dp/0321125215
https://www.amazon.com/Implementing-Domain-Driven-Design-Vaughn-Vernon/dp/0321834577/
https://www.amazon.com/Domain-Driven-Design-Distilled-Vaughn-Vernon/dp/0134434420
https://www.amazon.de/Domain-Driven-Design-kompakt-Vaughn-Vernon/dp/3864904390

