
" What needs to be done to make the REST architectural
style clear on the notion that hypertext is a constraint? In
other words, if the engine of application state (and hence
the API) is not being driven by hypertext, then it cannot
be RESTful and cannot be a REST API. Period. Is there
some broken manual somewhere that needs to be fixed? 
 
 – Roy T. Fielding

REST Assured
Hypermedia APIs with Spring

!

!
Oliver Gierke

Oliver Gierke
Engineer @ Pivotal
Spring Data project lead
!

ogierke@gopivotal.com
www.olivergierke.de
olivergierke

mailto:ogierk@gopivotal.com?subject=
http://www.oliverge

Background

REST

REST
Resources

URIs

Uniform Interface

Representations

Hypermedia

"HATEOAS - the word,
there's no pronunciation for.
!
 – Ben Hale (SpringOne2GX 2012)

Hypermedia
Links in representations

State navigations discoverable

{ _links : {
 self : { href : … },
 cancel : { href : … },
 update : { href : … },
 payment : { href : "…/orders/4711/payment" }
 },
!
 items : [{
 …
 }],
!
 location : "take-away",
 price : 4.2,
 status : "payment expected"
}

MediaType
text/html

application/hal+(json|xml)

application/collection+json

Implementation
aspects

Hypermedia VS.
Java Frameworks

HTTP Methods

URI Mapping

Content 
negotiation

Hypermedia

Spring MVC JAX-RS

✓

✓

✓

✓

✓

✓

? ?

Spring HATEOAS

Spring HATEOAS
Representation models

LinkBuilder API

Representation enrichment

http://bit.ly/spring-hateoas

http://bit.ly/spring-hateoas

DEMO
https://github.com/olivergierke/spring-

hateoas-sample

https://github.com/olivergierke/spring-hateoas-sample

Spring Data REST

Spring Data REST
Export Spring Data repositories in a

hypermedia-driven way

Do „the right thing™“ by default

DEMO
https://github.com/olivergierke/rest-

microservices

https://github.com/olivergierke/rest-microservices

REST in practice

RESTBucks

RESTBucks
Starbucks (like) coffee ordering

Order / Payment

payment
expected

preparing

cancelled

ready completed

1

2

3

4

5 6

Method URI Action Step

POST /orders Create new order 1

POST/PATCH /orders/4711 Update the order
(only if "payment expected")

2

DELETE /orders/4711 Cancel order
(only if "payment expected")

3

PUT /orders/4711/payment Pay order
(only if "payment expected")

4

Barista preparing the order

GET /orders/4711 Poll order state 5

GET /orders/4711/receipt Access receipt

DELETE /orders/4711/receipt Conclude the order process 6

Challenges

Challenges
How to avoid hard coding URIs?

Use link
relations

orders Returns all orders available in the system

order Returns a single order

self The uri value can be used to GET the latest resource
representation of the order.

cancel This is the URI to be used to DELETE the order resource
should the consumer wish to cancel the order.

update Consumers can change the order using a POST to
transfer a representation to the linked resource.

payment
The linked resource allows the consumer to begin
paying for an order. Initiating payment involves PUTting
an appropriate resource representation to the specified
URI.

receipt The URI to access the receipt using GET and conclude
the order by taking the receipt (use DELETE).

orders Returns all orders available in the system

order Returns a single order

self The uri value can be used to GET the latest resource
representation of the order.

cancel This is the URI to be used to DELETE the order resource
should the consumer wish to cancel the order.

update Consumers can change the order using a POST to
transfer a representation to the linked resource.

payment
The linked resource allows the consumer to begin
paying for an order. Initiating payment involves PUTting
an appropriate resource representation to the specified
URI.

receipt The URI to access the receipt using GET and conclude
the order by taking the receipt (use DELETE).

Method URI Action Step

POST /orders Create new order 1

POST/PATCH /orders/4711 Update the order
(only if "payment expected")

2

DELETE /orders/4711 Cancel order
(only if "payment expected")

3

PUT /orders/4711/payment Pay order
(only if "payment expected")

4

Barista preparing the order

GET /orders/4711 Poll order state 5

GET /orders/4711/receipt Access receipt

DELETE /orders/4711/receipt Conclude the order process 6

Method Relation type Action Step

POST orders Create new order 1

POST/PATCH update Update the order
(only if "payment expected")

2

DELETE cancel Cancel order
(only if "payment expected")

3

PUT payment Pay order
(only if "payment expected")

4

Barista preparing the order

GET order Poll order state 5

GET receipt Access receipt

DELETE receipt Conclude the order process 6

Challenges
How to implement:  

"only if payment expected“?

!

Clients react on the presence of links

Spring RESTBucks

Spring RESTBucks
Sample implementation

Using Spring technologies

http://bit.ly/spring-restbucks

http://bit.ly/spring-restbucks

Web

Service

Repository

-

Orders

Spring Data

Spring Data  
REST

Payment

Spring Data

Manual 
implementation

Manual 
implementation

DEMO
https://github.com/olivergierke/spring-

restbucks

https://github.com/olivergierke/spring-restbucks

API docs?

"How does the client make
sense of all this?

Profiles

Profiles
RFC 6906

Points to resources describing additional
semantics within a media type

Curies

(HAL) Curies

{ "_links" : {

 "self" : { "href" : … },
 "restbucks:cancel" : { "href" : … },
 "restbucks:update" : { "href" : … },
!
 "curies" : {
 "name" : "restbucks",
 "href" : "…/rels/{rel}"
 "templated" : true
 }
 },
 …
}

Docs for update are at: …/rels/update

alps.io

alps.io
Application Level Profile Semantics

Describe state transitions and payloads

Media type agnostic

Repository with pre-defined docs

application/alps+(json|xml)

DEMO

Miscellaneous
Spring MVC integration testing

REST Shell

Thank you!

Resources

Code
Spring HATEOAS Sample

REST micro-services

Spring RESTBucks

https://github.com/olivergierke/spring-hateoas-sample
https://github.com/olivergierke/spring-restbucks

Books
RESTful Web APIs

REST in Practice

REST und HTTP

http://shop.oreilly.com/product/0636920028468.do
http://www.amazon.de/gp/product/0596805829/ref=as_li_qf_sp_asin_tl?ie=UTF8&camp=1638&creative=6742&creativeASIN=0596805829&linkCode=as2&tag=wwwolivergier-21
http://www.amazon.de/gp/product/3898647323/ref=as_li_tf_tl?ie=UTF8&camp=1638&creative=6742&creativeASIN=3898647323&linkCode=as2&tag=wwwolivergier-21

Videos
Hypermedia APIs - Jon Moore

Hypermedia APIs with Spring

https://vimeo.com/20781278
https://vimeo.com/53214577

