
Click icon to add picture

JSR 354 – Money & Currency
Introduction

 BEDCON 2013

5th April 2013
Anatole Tresch

Bio

Anatole Tresch

 Consultant, Coach

 Framework Architect

 Open Source Addicted

 Credit Suisse

 Specification Lead JSR 354

 atsticks@java.net

 Twitter: @atsticks

 anatole.tresch@credit-suisse.com

Introduction to JSR 354 -
http://java.net/projects/javamoney

5th April 2013 2

mailto:atsticks@java.net
mailto:anatole.tresch@credit-suisse.com

Agenda

 History and Motivation

 Overview

 Currencies and Amounts

 Precision and Rounding

 Formatting and Parsing

 Currency Conversion

 Provider and Extensions

 Demo

Introduction to JSR 354 -
http://java.net/projects/javamoney

Platform (SE) Scope

Standalone Scope

5th April 2013 3

History and Motivation

Introduction to JSR 354 -
http://java.net/projects/javamoney

5th April 2013 4

Earlier Approaches

Introduction to JSR 354 -
http://java.net/projects/javamoney

Martin Fowler:
A large proportion of the computers in
this world manipulate money, so it’s
always puzzled me that money isn’t
actually a first class data type in any
mainstream programming language.
The lack of a type causes problems, the
most obvious surrounding currencies…
see
http://martinfowler.com/eaaCatalog/money.html

Eric Evans – Time and Money:
On project after project, software developers
have to reinvent the wheel, creating objects for
simple recurring concepts such as “money” and
“currency”. Although most languages have a
“date” or “time” object, these are rudimentary,
and do not cover many needs, such as
recurring sequences of time, durations of time,
or intervals of time. …
To be quite frank, their code isn’t more than an
academic POC, factories called dollars() or
euros() are useless in real globally deployed
frameworks, but he made a good point.

5th April 2013 5

http://martinfowler.com/eaaCatalog/money.html

Motivation

 Monetary values are a key feature to many applications

 Existing java.util.Currency class is strictly a structure used
for representing ISO-4217 standard currencies.

 No standard value type to represent a monetary amount

 No support for currency arithmetic or conversion

 JDK Formatting features lack of flexibility

Introduction to JSR 354 -
http://java.net/projects/javamoney

5th April 2013 6

Schedule

 Java SE 9

 Java ME/Embedded 8 oder 9

Following the EC Merge and Standard/Embedded
harmonization, no JSR should be SE/EE or ME only. Money is so
important, and has almost no legacy in the JDK except
java.util.Currency, that it should be supported by all
possible platforms, except maybe JavaCard for now.

 With back-port to previous versions still supported and in
relevant use

 EDR: Beginning of April 2013

Introduction to JSR 354 -
http://java.net/projects/javamoney

5th April 2013 7

Overview

Introduction to JSR 354 -
http://java.net/projects/javamoney

5th April 2013 8

Overview of JSR 354

 Core API: javax.money

CurrencyUnit, MonetaryAmount and exceptions

 Conversion API: javax.money.conversion

ExchangeRate, CurrencyConverter

 Formatting: javax.money.format

LocalizationStyle, ItemFormatter, ItemParser

 Provider singleton: javax.money.provider

Monetary

 Extensions: javax.money.ext

Region support, Calculations

 Reference Implementation: net.java.javamoney.ri

 TCK

Introduction to JSR 354 -
http://java.net/projects/javamoney

5th April 2013 9

Currencies and Amounts
javax.money

Introduction to JSR 354 -
http://java.net/projects/javamoney

5th April 2013 10

Currencies
ISO 4217

Special Codes

Ambiguities

Unmodeled
Aspects

Minor units

Introduction to JSR 354 -
http://java.net/projects/javamoney

115th April 2013

 Precious Metals (XAU, XAG)
 Testing (XTS)
 No Currency (XXX)
 Supranational currencies, e.g. East Caribbean

dollar, the CFP franc, the CFA franc.

 CFA franc: West African CFA franc und
Central African CFA franc = denotes 2
effectively interchangeable (!).

 Switzerland: CHF, CHE (WIR-EURO), CHW (WIR)
 USA: USD, USN (next day), USS (same day)

Legal acceptance, e.g. Indian Rupees are legally
accepted in Buthan/Nepal, but not vice versa!

Typically 1/100, rarely 1/1000, but also 1/5
(Mauritania, Madagaskar), 0.00000001 (BitCoin)

Virtual Currencies

 Video Game Currencies (Gold, Gil, Rupees, Credits, Gold
Rings, Hearts, Zenny, Potch, Munny, Nuyen…)

 Facebook Credits are a virtual currency you can use to buy
virtual goods in any games or apps of the Facebook
platform that accept payments. You can purchase
Facebook Credits directly from within an app using your
credit card, PayPal, mobile phone and many other local
payment methods.

 Bitcoin (sign: BTC) is a decentralized digital currency
based on an open-source, peer-to-peer internet protocol.
It was introduced by a pseudonymous developer named
Satoshi Nakamoto in 2009.

Introduction to JSR 354 -
http://java.net/projects/javamoney

5th April 2013 12

Limitations of java.util.Currency

 No support for historical Currencies

 No support for non standard Currencies
(e.g. cows or camels)

 No support for virtual
Currencies (Lindon Dollars,
BitCoin, Social Currencies)

 No support for custom
schemes (e.g. legacy codes)

 Only access by currency
code, or Locale

 No support for special use
cases/extensions

Introduction to JSR 354 -
http://java.net/projects/javamoney

public interface CurrencyUnit{
 public String getCurrencyCode();
 public int getNumericCode();
 public int getDefaultFractionDigits();
 // new methods
 public String getNamespace();
 public boolean isLegalTender();
 public boolean isVirtual();
 public Long getValidFrom();
 public Long getValidUntil();
 public <T> T getAttribute(
 String key, Class<T> type);
}

Implementation:
MoneyCurrency

5th April 2013 13

Access/Create Currencies
Usage

Introduction to JSR 354 -
http://java.net/projects/javamoney

/**
 * Shows simple creation of a CurrencyUnit for ISO, backed up by JDK
 * Currency implementation.
 */
public void forISOCurrencies() {
 CurrencyUnit currency = MoneyCurrency.of("USD");
 currency = MoneyCurrency.of("myNamespace", "myCode"); // null!
}

public void buildACurrencyUnit() {
 MoneyCurrency.Builder builder = new MoneyCurrency.Builder();
 builder.setNamespace("myNamespace");
 builder.setCurrencyCode("myCode");
 builder.setDefaultFractionDigits(4);
 builder.setLegalTender(false);
 builder.setValidFrom(System.currentTimeMillis());
 builder.setVirtual(true);
 builder.setAttribute("test-only", true);
 CurrencyUnit unit = builder.build();
 // nevertheless MoneyCurrency.of("myNamespace", "myCode"); still returns
 // null!
 builder.build(true);
 // no it is registered
 unit = MoneyCurrency.of("myNamespace", "myCode");
}

5th April 2013 14

Monetary Amount

Amount = Number + Currency + Operations

How to represent the numeric amount?
Contradictory requirements:

 Performant (e.g. for trading)

 Precise (e.g. for calculations)

 Must model small numbers (e.g. webshop)

 Must support huge Numbers (e.g. risk calculations, statistics)

Rounding, Precision, Scale

Introduction to JSR 354 -
http://java.net/projects/javamoney

Solution: support several numeric representations!

5th April 2013 15

Monetary Amount (continued)

Introduction to JSR 354 -
http://java.net/projects/javamoney

public interface MonetaryAmount{
 public CurrencyUnit getCurrency();
 public Class<?> getNumberType();
 public <T> T asType(Class<T>);
 public int intValue(); public int intValueExact();
 public long longValue(); public long longValueExact();
 […]
 public MonetaryAmount abs();
 public MonetaryAmount min(…);
 public MonetaryAmount max(…);
 public MonetaryAmount add(…);
 public MonetaryAmount substract(…);
 public MonetaryAmount divide(…);
 public MonetaryAmount[] divideAndRemainder(…);
 public MonetaryAmount divideToIntegralValue(…);
 public MonetaryAmount remainder(…);
 public MonetaryAmount multiply(…);
 public MonetaryAmount withAmount(Number amount);
 […]
 public int getScale(); public int getPrecision();
 […]
 public boolean isPositive(); public boolean isPositiveOrZero();
 public boolean isNegative(); public boolean isNegativeOrZero();
 public boolean isLessThan(…);
 public boolean isLessThanOrEqualTo(…);
 […]
}

Algorithmic
Operations…

Data Representation
and Comparison.

Data Access.

Implementation:
Money

5th April 2013 16

Creating Amounts
Usage

Introduction to JSR 354 -
http://java.net/projects/javamoney

 /** * Simplest case create an amount with an ISO currency.
 */
public void forISOCurrencies() {
 MonetaryAmount amount = Money.of("USD", 1234566.15);
}

/**
 * Create an amount using a custom currency.
 */
public void forCustomCurrencies() {
 CurrencyUnit currency = MoneyCurrency.of(
 "myNamespace", "myCode");
 MonetaryAmount amount = Money.of(currency, 1234566.15);
}

5th April 2013 17

Precision and Rounding
javax.money

Introduction to JSR 354 -
http://java.net/projects/javamoney

5th April 2013 18

Numeric Precision

 Internal Precision (implied by internal number type)

 External Precision (Rounding applied, when the numeric part is
accessed/passed outside)

 Formatting Precision (Rounding for display and output)

 Interoperability

– Different precision/scale

– Distinct numeric representations

– Serialization

Introduction to JSR 354 -
http://java.net/projects/javamoney

By default only internal rounding is applied
automatically.

5th April 2013 19

Mixing Numeric Representations

Introduction to JSR 354 -
http://java.net/projects/javamoney

 Money as representation type, since its the class on which
add() was called.

 Precision = 9
 Scale = 2

 Mechanism applies similarly for operation chaining

5th April 2013 20

Money amt1 = Money.of(“CHF”, 10.23d);
IntegralMoney amt2 = IntegralMoney.of(“CHF”, 123456789);
Money result = amt1.add(amt2);

Money amt1 = …;
IntegralMoney amt2 = …;
CurrencyConversion conversion = …;
Money result = amt1
 .add(amt2)
 .multiply(2)
 .with(conversion)
 .round(MoneyRounding.of());

Rounding

External Rounding and Formatting Rounding can be implemented in
many ways,
depending on the use cases

Example for non standard-rounding Argentina:

 If the third digit is 2 or less, change it to 0
or drop it.

 If the third digit is between 3 and 7,
change it to 5.

 If the third digit is 8 or more, add one to
the second digit and drop the third digit or
change it to 0.

Introduction to JSR 354 -
http://java.net/projects/javamoney

Rounding rounding =
MoneyRounding.getRounding(
 MoneyCurrency.of(“USD”));
MontaryAmount myAmount = …;
MonetaryAmount rounded =
 rounding.round(myAmount);

public interface Rounding{
 public MonetaryAmount round(MonetaryAmount);
}

Original Rounde
d

Remark

123.452 123.45 3. digit <3 -> round down

123.456 123.455 3<= 3. digit <=7 -> change
to 5

123.459 123.46 3. digit >=8 -> round up

Implementation:
MoneyRounding

5th April 2013 21

Arithmetics & Rounding
Usage

Introduction to JSR 354 -
http://java.net/projects/javamoney

 /** * Mixed representations.
 */
public void mixedImplementations() {
 MonetaryAmount m1 = IntegralMoney.of("USD", 789);
 MonetaryAmount m2 = Money.of("USD", 1234566.15);

 MonetaryAmount sum = m1.add(m2);
 MonetaryAmount diff = m2.substract(m1).negate();
}

/**
 * Round amount based on ist currency (defaultFractionUnits).
 */
public MonetaryAmount roundDefault(MonetaryAmount amount){
 Rounding rounding =
 MoneyRounding.of(amount.getCurrency());
 return rounding.round(amount);
}

5th April 2013 22

Formatting and Parsing
javax.money.format

Introduction to JSR 354 -
http://java.net/projects/javamoney

5th April 2013 23

Formatting and Parsing
Challenges
 Multiple Locale instances for Translation, Dates, Time, Numbers,

Currencies

 Additional parameters

– Currency Placement

– Rounding, Lenient Fractions, Min, Max etc.

 Natural language support for non-decimal valuations for
example

– Lakhs, Crores (1 Lakh = 100,000, 1 Crore = 100 Lakh)

– INR 12,34,56,000.21 is written
12 Crore, 34 Lakh, 56 Thousand
Rupees and 21 Paise

 Unsupported by NumberFormat, e.g.
INR 12,34,225.21

 How to deal with different formatting
styles?

Introduction to JSR 354 -
http://java.net/projects/javamoney

LocalizationStyle, ItemFormatter/-
Parser

public class LocalizationStyle
implements Serializable {
 […]
 public String getId();
 public Locale getTranslationLocale();
 public Locale getNumberLocale();
 public Locale getDateLocale();
 public Locale getTimeLocale();
 public Map<String, Object> getAttributes() ;
 public <T> T getAttribute(
 String key, Class<T> type);
 public static LocalizationStyle of(
 Locale locale);
 public boolean isDefaultStyle() ;
 […]
}

5th April 2013 24

Formatting and Parsing
ItemFormat

Introduction to JSR 354 -
http://java.net/projects/javamoney

public interface ItemFormat<T> {
public Class<T> getTargetClass();
public LocalizationStyle getStyle();
public String format(T item);
public void print(Appendable appendable,
 T item)
throws IOException;
public T parse(CharSequence input)
throws ParseException;
}

public final class MonetaryFormat{
 public Collection<String>
 getSupportedStyleIds(Class<?> targetType);
 public boolean isSupportedStyle(
 Class<?> targetType, String styleId);
 public <T> ItemFormat<T>
 getItemFormat(Class<T> targetType,
 LocalizationStyle style)

 throws ItemFormatException;
 public <T> ItemFormat<T>
 getItemFormat(Class<T> targetType,
 Locale locale)
 throws ItemFormatException;
}

5th April 2013 25

Currency Conversion
javax.money.conversion

Introduction to JSR 354 -
http://java.net/projects/javamoney

5th April 2013 26

Currency Conversion

 ExchangeRateType

 ExchangeRate:

– ExchangeRateType

– Base, Term currency

– Conversion factor

– Validity (from/until)

– Provider (optional)

– Direct/Derived Rates

 ExchangeRateProvider

 CurrencyConverter

Introduction to JSR 354 -
http://java.net/projects/javamoney

public interface ExchangeRate {
 public ExchangeRateType getExchangeRateType();
 public CurrencyUnit getBase();
 public CurrencyUnit getTerm();
 public Number getFactor();
 public Long getValidFrom();
 public Long getValidUntil();
 public boolean isValid();
 public String getProvider();
 public ExchangeRate[] getExchangeRateChain();
 public boolean isDerived();
}

5th April 2013 27

Currency Conversion
Usage

Introduction to JSR 354 -
http://java.net/projects/javamoney

 /**
 * Shows simple conversion of an amount.
 */
public Money convertAmountToCHF(Money amount){

 CurrencyUnit currency = MoneyCurrency.of(curr);
 ExchangeRateType rateType = ExchangeRateType.of("EZB");

 ConversionProvider convProvider =

MonetaryConversion.getConversionProvider(rateType);

 CurrencyConversion chfConversion =
 convProvider.getConverter()

.getCurrencyConversion(MoneyCurrency.of("CHF");
 return amount.with(chfConversion);
}

5th April 2013 28

Provider & Extensions
javax.money, javax.money.ext

Introduction to JSR 354 -
http://java.net/projects/javamoney

5th April 2013 29

Note: this module has changed in the meantime

Provider
Monetary Singleton
 javax.money.Monetary singleton provides access to all

components

 By default components loaded using JDK’s
java.util.ServiceLoader.

 Alternate Loader implementations possible, e.g.

– Using CDI standalone

– Within a J2EE container

– Spring

– …

Introduction to JSR 354 -
http://java.net/projects/javamoney

public final class Monetary{
 public static CurrencyUnitProvider getCurrencyUnitProvider();
 public static ConversionProvider getConversionProvider();
 public static ItemFormatterFactory getItemFormatterFactory();
 public static ItemParserFactory getItemParserFactory();
 public static RoundingProvider getRoundingProvider();
}

5th April 2013 30

Note: this module has changed in the meantime

Extensions

Allow registration of additional functionalities into Monetary:

 Calculation Utilities

 Compound Values

 Statistical Modules

 Financial Modules

 Regions/Regional Providers,
e.g. for mapping accepting
currencies, legal tenders etc.

 …

To be discussed:

 if and what extensions are part of the JSR

 Extensions are provided within RI

 Extensions are provided as separate GitHub module

 Are Extensions needed at all?

Introduction to JSR 354 -
http://java.net/projects/javamoney

CalculationUtils utils =
 Monetary.getExtension(CalculationUtils.class);
utils.total(…);

@ExposedType(CalculationUtils.class)
public class CalculationUtilsImpl implements
CalculationUtils, MonetaryExtension{
 …
}

5th April 2013 31

Note: this module has changed in the meantime

Extensions
Usage

Introduction to JSR 354 -
http://java.net/projects/javamoney

 /**
 * Shows simple usage of an extension, e.g. calculating
 * the total of all amounts, that have a certain currency.
 */
public MonetaryAmount total(MonetaryAmount… amount,

String curr){

 AmountUtils utils = MoneyCurrency.getExtensions(
 AmountUtils.class);
 return utils.total(utils.filter(amount, curr));
}

5th April 2013 32

Note: this module has changed in the meantime

Demo

Introduction to JSR 354 -
http://java.net/projects/javamoney

5th April 2013 33

Stay Tuned!

Introduction to JSR 354 -
http://java.net/projects/javamoney

 JSR 354: http://jcp.org
 Java.net Project: http://java.net/projects/javamoney
 GitHub Project:

https://github.com/JavaMoney/javamoney
 Twitter: @jsr354

5th April 2013 34

http://jcp.org/
http://java.net/projects/javamoney
https://github.com/JavaMoney/javamoney

Q & A

Introduction to JSR 354 -
http://java.net/projects/javamoney

???

5th April 2013 35

	Folie 1
	Bio
	Agenda
	History and Motivation
	Earlier Approaches
	Motivation
	Schedule
	Overview
	Overview of JSR 354
	Currencies and Amounts javax.money
	Currencies ISO 4217
	Virtual Currencies
	Limitations of java.util.Currency
	Access/Create Currencies Usage
	Monetary Amount
	Monetary Amount (continued)
	Creating Amounts Usage
	Precision and Rounding javax.money
	Numeric Precision
	Mixing Numeric Representations
	Rounding
	Arithmetics & Rounding Usage
	Formatting and Parsing javax.money.format
	Formatting and Parsing Challenges
	Formatting and Parsing ItemFormat
	Currency Conversion javax.money.conversion
	Currency Conversion
	Currency Conversion Usage
	Provider & Extensions javax.money, javax.money.ext
	Provider Monetary Singleton
	Extensions
	Extensions Usage
	Demo
	Stay Tuned!
	Q & A

