
Dierk König
Canoo Engineering AG

Basel, Schweiz

Multi-core für jedermann

mit GPars

Berlin Expert Days
2012

Welcome!
Dierk König
Fellow @ Canoo Engineering AG, Basel (CH)

Rich Internet Applications
Products, Projects, Consulting
www.canoo.com

Open-source committer Groovy, Grails, GPars

Groovy & GPars mission

3

1 Built for Java developers

Mend with Java

Make concurrency simpler

2

3

The Java state of affairs

Starting new threads is easy.
Some real goodies in java.util.concurrent.* & Java 7

Manual thread-coordination is difficult.
Access to shared state is error-prone.

Scheduling issues for many threads with bad
concurrency characteristics.
Good use of pooling is not obvious.
Concepts are rather „low level“.

4

It‘s all about coordination

Fork/Join
Map/Reduce

Actor
Agent
Dataflow

Working on collections with
 fixed coordination

Explicit coordination
Delegated coordination
Implicit coordination

1.8.2

It‘s all about coordination

Fork/Join
Map/Reduce

Actor
Agent
Dataflow

Asynchronizer

STM

more

Working on collections with
 fixed coordination

Explicit coordination
Delegated coordination
Implicit coordination

1.8.2

Fork/Join on collections

import static groovyx.gpars.GParsPool.withPool

def numbers = [1, 2, 3, 4, 5, 6]
def squares = [1, 4, 9, 16, 25, 36]

withPool {
 assert squares == numbers.collectParallel { it * it }
}

// in reality, find better chunks of work!

6

Fork/Join on collections

import static groovyx.gpars.GParsPool.withPool

def numbers = [1, 2, 3, 4, 5, 6]
def squares = [1, 4, 9, 16, 25, 36]

withPool {
 assert squares == numbers.collectParallel { it * it }
}

// in reality, find better chunks of work!

6

makeConcurrent()Variation

More such methods

any { ... } collect { ... } count(filter)
each { ... } eachWithIndex{ ... }
every { ... }
find { ... } findAll { ... } findAny { ... }
fold { ... } fold(seed) { ... }
grep(filter)
groupBy { ... }
max { ... } max()
min { ... } min()
split { ... } sum()

7

Map/Filter/Reduce on collections
import static groovyx.gpars.GParsPool.withPool

withPool {
 assert 55 == [0, 1, 2, 3, 4].parallel
 .map { it + 1 }
 .map { it ** 2 }
 .reduce { a, b -> a + b }
}

8

Fork/Join vs Map/Filter/Reduce

9

!

Fork/Join vs Map/Filter/Reduce

9

!

fixed coordination

Explicit coordination with Actors

import static groovyx.gpars.actor.Actors.*

def printer = reactor { println it }
def decryptor = reactor { reply it.reverse() }

actor {
 decryptor.send 'lellarap si yvoorG'
 react {
 printer.send 'Decrypted message: ' + it
 decryptor.stop()
 printer.stop()
 }
}.join()

10

Actors

Process one message at a time.

Dispatch on the message type,
which fits nicely with dynamic languages.

Are often used in composition,
which can lead to further problems down the road.

11

Personal note:

Actors are overrated

Delegate to an Agent

import groovyx.gpars.agent.Agent

def safe = new Agent<List>(['GPars'])

safe.send { it.add 'is safe!' }
safe.send { updateValue it * 2 }

println safe.val

12

Agents

Analogous to Clojure agents (atoms, refs, ...)

Implementations differ much in efficiency.

13

DataFlow for implicit coordination

import groovyx.gpars.dataflow.Dataflows
import static groovyx.gpars.dataflow.Dataflow.task

final flow = new Dataflows()
task { flow.result = flow.x + flow.y }!
task { flow.x = 10 }! ! !
task { flow.y = 5 }! ! !

assert 15 == flow.result!

14

Dataflow

Flavors: variables, streams, operators, tasks, flows

Write-Once, Read-Many (non-blocking)

Feel free to use millions of them

Fast, efficient, safe, and testable!

15

Model the flow of data,

not the control flow!

KanbanFlow in code

import static ProcessingNode.node
import groovyx.gpars.kanban.KanbanFlow

def producer = node { below -> below << 1 }
def consumer = node { above -> println above.take() }

new KanbanFlow().with {
 link producer to consumer
 start()
 links*.addTray()
 // run for a while
 stop()
}

16

Efficient Producer-Consumer

KanbanFlow pattern by /me

http://people.canoo.com/mittie/kanbanflow.html

Simple idea, amazing results

Resource efficient, composable, testable

17

Non-blocking writes,

Deadlock-free by design

Takeaways

18

1 Experiment with GPars!

Great for learning concepts!

Get involved!

2

3

Further reading

• Groovy in Action groovy.canoo.com/gina
Manning, 2007, Foreword by James Gosling
König with Glover, Laforge, King, Skeet

• groovy.codehaus.org
gpars.codehaus.org

20

20

Discussion

credits:
Paul King

Discussion

credits:
Paul King

dierk.koenig@canoo.com
@mittie

