
Dierk König
Canoo Engineering AG

Basel, Schweiz

Multi-core für jedermann 

mit GPars

Berlin Expert Days
2012



Welcome!
Dierk König
Fellow @ Canoo Engineering AG, Basel (CH)

Rich Internet Applications
Products, Projects, Consulting
www.canoo.com

Open-source committer Groovy, Grails, GPars



Groovy & GPars mission
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1 Built for Java developers

Mend with Java 

Make concurrency simpler
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The Java state of affairs

Starting new threads is easy.
Some real goodies in java.util.concurrent.* & Java 7

Manual thread-coordination is difficult.
Access to shared state is error-prone.

Scheduling issues for many threads with bad
concurrency characteristics.
Good use of pooling is not obvious.
Concepts are rather „low level“.
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It‘s all about coordination

Fork/Join
Map/Reduce

Actor 
Agent
Dataflow

Working on collections with
    fixed      coordination

Explicit     coordination
Delegated coordination
Implicit     coordination
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Fork/Join on collections

import static groovyx.gpars.GParsPool.withPool 

def numbers = [1, 2, 3,  4,  5,  6]
def squares = [1, 4, 9, 16, 25, 36]

withPool {
 assert squares == numbers.collectParallel  { it * it }
}

// in reality, find better chunks of work!
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makeConcurrent()Variation



More such methods

any { ... }       collect { ... }       count(filter)   
each { ... }     eachWithIndex{ ... }    
every { ... }    
find { ... }       findAll { ... }       findAny { ... }  
fold { ... }       fold(seed) { ... }   
grep(filter)    
groupBy { ... }  
max { ... }     max()   
min { ... }      min()   
split { ... }     sum()   
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Map/Filter/Reduce on collections
import static groovyx.gpars.GParsPool.withPool 

withPool {
    assert 55 == [0, 1, 2, 3, 4].parallel
        .map    { it + 1  }
        .map    { it ** 2 }
        .reduce { a, b -> a + b }
}
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Fork/Join  vs  Map/Filter/Reduce
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Fork/Join  vs  Map/Filter/Reduce
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Explicit coordination with Actors

import static groovyx.gpars.actor.Actors.*

def printer   = reactor { println it }
def decryptor = reactor { reply it.reverse() }

actor {
    decryptor.send    'lellarap si yvoorG'
    react {
        printer.send  'Decrypted message: ' + it
        decryptor.stop()
        printer.stop()
    }
}.join()
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Actors

Process one message at a time.

Dispatch on the message type, 
which fits nicely with dynamic languages.

Are often used in composition,
which can lead to further problems down the road.
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Personal note:

Actors are overrated



Delegate to an Agent

import groovyx.gpars.agent.Agent 

def safe = new Agent<List>( ['GPars'] )

safe.send { it.add 'is safe!'  }
safe.send { updateValue it * 2 }

println safe.val
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Agents

Analogous to Clojure agents (atoms, refs, ...)

Implementations differ much in efficiency.
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DataFlow for implicit coordination

import groovyx.gpars.dataflow.Dataflows
import static groovyx.gpars.dataflow.Dataflow.task

final flow = new Dataflows()
task { flow.result = flow.x + flow.y }!
task { flow.x = 10 }! ! !
task { flow.y =  5 }! ! !

assert 15 == flow.result!
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Dataflow

Flavors: variables, streams, operators, tasks, flows

Write-Once, Read-Many (non-blocking)

Feel free to use millions of them

Fast, efficient, safe, and testable!
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Model the flow of data, 

not the control flow!



KanbanFlow in code

import static ProcessingNode.node
import groovyx.gpars.kanban.KanbanFlow

def producer = node { below -> below << 1 }
def consumer = node { above -> println above.take() }

new KanbanFlow().with {
    link producer to consumer
    start()
    links*.addTray()
    // run for a while
    stop()
}
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Efficient Producer-Consumer

KanbanFlow pattern by /me

http://people.canoo.com/mittie/kanbanflow.html

Simple idea, amazing results

Resource efficient, composable, testable
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Non-blocking writes,

Deadlock-free by design



Takeaways
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1 Experiment with GPars!

Great for learning concepts! 

Get involved!
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Further reading 

• Groovy in Action groovy.canoo.com/gina  
Manning, 2007, Foreword by James Gosling
König with Glover, Laforge, King, Skeet

• groovy.codehaus.org
gpars.codehaus.org
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